Assessment of groundwater recharge processes in a carbonate aquifer under semi-arid climate by an integrated surface-subsurface, multi-continuum model

Lysander Bresinsky¹, Jannes Kordilla¹, Irina Engelhardt², Martin Sauter¹

¹University of Göttingen, Dept. of Applied Geology, Germany < lbresin@gwdg.de> ²Technical University of Berlin, Dept. of Hydrogeology, Germany

I. Introduction

Motivation

- Karst groundwater resources constitute a major freshwater resource in the Mediterranean.
- Mediterranean groundwater resources are possibly to decrease due to a projected increase in temperature and the change in temporal precipitation patterns.
- Highly non-linear and rapid flow processes (i.e. preferential flow) make it nearly impossible to find an adequate single
- Recharge estimations based on cumulative annual or monthly precipitation do not consider temporal patterns and various rainfall intensities.

Key Objectives:

- Estimate groundwater recharge based on a rigorous implementation of surface-hydrological processes, that account
- the particularities of rock-soil landscape,
- focussed recharge along karst features (i.e., sinkholes),
- transmission losses of ephemeral streams (i.e., wadis) (Messerschmid, 2018),
- specific climate conditions as well as the different precipitation patterns.
- Simulation of the effect of infiltration through a thick (several hundreds of meters) vadose zone on groundwater flow dynamics in a semi-arid environment.

II. Area of study

The study is conducted for Towards Taninim the Western Mountain Aquifer (WMA), located in Israel and the Palestinian territories.

Geological and hydrogeological setting:

highly karstified fractured Cretaceous dolomite).

carbonate Figure 1: Schematic representation aquifer (mainly calcite and of the hydrogeological setting (after Weinberger, 1994)

- Composed of two sub-aquifers (Upper & Lower Judean Aquifer) divided by chalk and marl of the Moza Formation.
- Unconfined in the East and confined in the West (Fig. 1)

Figure 2: Catchment of the Western Mountain Aquifer and computed/observed transient hydraulic heads of selected wells

- The rocks of the WMA are exposed due to an anticline structure in the Judean and Samarian Mountains (East)
- The aquifer drains at the Yarkon (till the 70s) and Taninim springs (Fig. 2)
- Little interaction with saline Mediterranean waters due to impermeable layers of the Talme Yafe Group.

Figure 3: Model discretisation.

High annual and seasonal

variability of rainfall (mainly

from December to February).

levels due pumping since the

1960s (major discharge com-

ponent).

• Large drop of groundwater

Figure 4: Spatial saturation distribution of a preliminary model

III. Methods

• HydroGeoSphere (HGS) is utilized on a high-performancecomputing platform: Richards' equation is applied for both continua (Aquanty, 2015):

$$-\nabla \cdot (w\boldsymbol{q}) + \sum \Gamma_{ex} \pm Q = w \frac{\partial}{\partial t} (\theta_s S_w), \tag{1}$$

where the fluid flux q is defined as:

$$q = -K \cdot k_r \nabla (\psi + z)$$
. (2)

w: volumetric fraction of the total Q : volumetric fluid flux (bcs)

porosity occupied the continuum

q: fluid flux

 θ_s : saturated water content

K: hydraulic conductivity

 k_r : relative permeability

 ϕ : pressure head

• Exchange flow between the continua via a Darcy-type term:

$$\Gamma_d = \frac{\beta_d}{a^2} \gamma_w K_\alpha k_{ra} (\psi_d - \psi) \tag{3}$$

a: inter-continuum skin thickness

• 2D overland flow via the Saint Venant equation:

 $-\nabla \cdot (d_o \mathbf{q_o}) - d_o \Gamma_o \pm Q_o = \frac{\partial \phi_o h_o}{\partial t},$ (4)

where the fluid flux q_o yields:

K: hydraulic conductivity

$$\mathbf{q_o} = -\mathbf{K_o} \cdot k_{ro} \nabla (d_o + z_o). \tag{5}$$

 ϕ_0 : surface flow domain porosity h_0 : water surface elevation k_{ro} : horizontal conductance reduction

• Coupling of surface and subsurface flow:

 h/h_d : subsurface porous medium/dual K_{zz}/K_{dzz} : vertical saturated hydraulic k_r/k_dr : relative permeability

IV. Model calibration

- During the pre-development period the aquifer exclusively discharged via two springs (Yarkon & Taninim).
- The steady state simulation was configured to represent the water-level and discharge rate of the pre-development period (Fig. 5a).

Figure 5: Computed vs. observed spring discharge and stationary well heads

- Employing a single continuum model within the period 09/15/1950 to 09/15/2007 that reflects the observed spring discharge at the Taninim and Yarkon spring and well heads.
- The simulated discharge reproduces the drying up of the Yarkon spring in the 1970s (Fig. 5 & 2).
- In 1991/92 the Yarkon spring was reactivated due to an extremely wet year. The simulation replicates this event.

V. Conclusion & Outlook

Conclusion:

- A fully-coupled dual-continuum model of the subsurface and surface is expected to better represent the fast response to recharge events accompanied by a high variability of flow rates, flow velocities and water level fluctuations.
- This study demonstrates that an integrated surfacesubsurface hydrologic model is capable to capture the dynamics on an increased spatial and temporal scale.

Outlook:

- Definition of suitable unsaturated parameters (i.e., Van-Genuchten parametrization).
- Implementation of a second continuum to account for the duality of flow,
- and of a 2D surface routing domain to account for transmission losses in ephemeral streams and focused recharge induced by karst landscape characteristics (i.e., dolines).

Acknowledgement: This work was funded by the Federal Ministry of Education and Research of Germany (BMBF) within the context of the MedWater project (GROW pro-

References: Weinberger (1994): Journal of Hydrology (161); Messerschmid (2018): Hydrological Processes (32); Aquanty (2015): HGS User Manual - Theory