

Motivation

capacity.

Key Objective:

Aquifer Area

(>9,000 km²)

(~2,000 km²)

Major Springs

Extraction Well

Mediterranean

Figure 1: WMA location

(data from Abusaada & Sauter, 2012)

Recharge Area

Quantification of large-scale and long-term groundwater resources in karst aquifers under Mediterranean climate: deterministic versus stochastic approaches

features and the karst system.

Water scarcity in many regions of the world will be

exacerbated by climate change. Carbonate aquifers provide

vulnerable to over-exploitation due to their low storage

valuable water resource in the Mediterranean region, but are

Sustainable management of Mediterranean karst aquifers is

a key issue at local & regional scale. However, the response of

carbonate aquifers to high-intensity precipitation events &

droughts is controlled by the distribution and type of karst

To **identify optimal modelling concepts** for highly dynamic &

Flann Corcoran¹, Simone Höglauer¹, Lysander Bresinsky², Martin Sauter², Philippe Renard³, Edoardo Bucchignani⁴, Irina Engelhardt¹

¹Department of Hydrogeology, TU Berlin, Germany; ²University of Göttingen, Dept. of Applied Geology, Germany;

³University of Neuchâtel, Centre of Hydrogeology and Geothermics, Switzerland; ⁴Italian Aerospace Research Centre (CIRA), Capua, Italy.

Selection of a Suitable Numerical Modelling Approach

Two modelling approaches are used for comparison:

Deterministic multi-continuum approach

- 1. Considers surface routing, unsaturated & saturated flow.
- 2. Recharge is simulated directly.
- 3. Parameterised with literature values
- 4. Calibrated with piezometric pressure head & discharge time series.
- 5. Enhanced simulation of response to extreme rainfall events.
- 6. Subject to considerable **parameter** uncertainty.

using a Stochastic Karst Simulator (SKS)

(Borghi et al.) for parameterisation of

the single-continuum model (Figure 3).

Stochastic single-continuum approach

1. Considers saturated flow only.

Model code: MODFLOW & SKS.

- Recharge from external calculation
- Parameterised with karstic networks from pseudo-genetic Stochastic Karst Simulator (SKS)
- Less reliant on high-quality observation timeseries.
- Stochastic parameterisation allows estimation of uncertainty.
- 6. Fewer parameters, accounting for data scarcity.

Model code: HydroGeoSphere.

Stochastic single-continuum workflow

Karstic networks will be generated

Major Spring

Paleo-recharge

Paleo-discharge

·Paleo-canyons

High: 1370

Low: -2110

—Faults

Top of WMA (masl)

First Results

<u>Derived geological and climatic development</u> (Figure 6) Messinian Salinity Crisis (5.96 – 5.33 Ma) key period for

karstification due to major sea-level decline & development of canyons at coast, allowing for development of karst to substantial depth.

Figure 6: Global and Mediterranean sea levels and climate conditions for Israel region. Data compiled from Miller et al. (2005), Vaks et al., (2013) and Frumkin et al. (2000).

Calibration Results for Multi-continuum Model Calibrated to piezometric pressure head and discharge observations from Abusaada & Sauter (2012) (Figure 7).

b) Simulated Vs observed heads for initial steady state run; c) Transient spring discharge at two spring locations

References

Abusaada, M., Sauter, M., 2012. Studying the Flow Dynamics of a Karst Aquifer System with an Equivalent Porous Medium Model. Ground Water, 51(4), 641-50.

Borghi, A.; Renard, P. & Jenni, S., 2012. A pseudo-genetic stochastic model to generate karstic networks. Journal of Hydrology, 414-415, 516-529.

Frumkin, A.; Ford, D. C. & Schwarcz, H. P., 2000. Paleoclimate and vegetation of the last glacial cycles in Jerusalem from a speleothem record. Global Biogeochemical Cycles, 14.

Laskow, M., Gendler, M., Goldberg, I., Gvirtzman, H. & Frumkin, A., 2011, 'Deep confined karst detection, analysis and paleo-hydrology reconstruction at a basin-wide scale using new geophysical interpretation of borehole logs', Journal of Hydrology 406(3), 158 – 169.

Miller, K. G.; Kominz, M. A.; Browning, J. V.; Wright, J. D.; Mountain, G. S.; Katz, M. E.; Sugarman, P. J.; Cramer, B. S.; Christie-Blick, N. & Pekar, S. F., 2005. The Phanerozoic record of global sea-level change. Science, 310, 1293-1298

Vaks, A.; Woodhead, J.; Bar-Matthews, M.; Ayalon, A.; Cliff, R. A.; Zilberman, T.; Matthews, A. & Frumkin, A., 2013. Pliocene–Pleistocene climate of the northern margin of Saharan– Arabian Desert recorded in speleothems from the Negev Desert, Israel. Earth and Planetary Science Letters, 368, 88-100.

Financing

This work is funded by the Federal Ministry of Education & Research (BMBF) of Germany

Contact Technische Universität Berlin Sekr. BH 3-2 Ernst-Reuter-Platz 1 10587 Berlin simone.hoeglauer@tu-berlin.de

Tel: +49 30 314-72652

Study Area: Western Mountain Aquifer (WMA)

complex carbonate systems to improve management

concepts for local water user management.

Located in Israel & Palestinian Territories (Figure 1).

Cretaceous carbonate aquifer with developed karst system. Two limestone and dolomite sub-aquifers (both \sim 350 m thick) separated by argillaceous aquitard (~100 m thick).

Predicted Climate Change in the **Recharge Area of the** WMA (CIRA) (Figure 2).

- >2° increase in temperature.
- 20% reduction in precipitation.
- Reduction in frequency of very wet years.

Deterministic multi-continuum model

SKS:

Geological layers adapted from Abusaada & Sauter (2012) (Figures 4 and 5).

Karst Network

Specification of key

geological features

Karst

No Karst

High- & low hydraulic conductivity domains used to represent conduits & fissured matrix, respectively.

First-order exchange between surface and sub-surface domains allows simulation of rapid and diffuse recharge.

Generation of Karst

Networks by SKS

Figure 3: Schematic flow diagram for stochastic single-continuum modelling approach

Mapping of Karst Networks to

Ground-water Model

Figure 5: Multi-continuum model discretisation and boundary conditions